Parameter Curation and Data generation for Benchmarking
Multi-model Queries

Chao Zhang
Supervised by Jiaheng Lu
University of Helsinki, Finland

ABSTRACT

Unlike traditional database management systems which are
organized around a single data model, a multi-model databa-
se is designed to support multiple data models against a
single, integrated backend. For instance, document, graph,
relational, and key-value models are examples of data mod-
els that may be supported by a multi-model database. As
more and more platforms are proposed to deal with multi-
model data, it becomes important to have benchmarks that
can be used to evaluate performance and usability of the
next generation of multi-model database systems. In this
paper, we discuss the motivations and challenges for bench-
marking multi-model databases, and then present our cur-
rent research on the data generation and parameter curation
for benchmarking multi-model queries. Our benchmark can
be found at hitp://udbms.cs.helsinki.fi/bench/.

1. INTRODUCTION

Recently, there is a new trend [12, 11, 13, 3] for data man-
agement, namely, the multi-model approach, which mainly
aims to utilize a single platform to manage data in differ-
ent models, e.g., key-value, document, table, and graph.
Compared to the polyglot persistence technology in NoSQL
world which entails managing separate data stores to satisfy
various use cases, the multi-model approach has been consid-
ered as the next generation of data management technology
combining flexibility, scalability, and consistency.

The multi-model query is a unique operation in multi-
model databases which allows users to retrieve multi-model
data by using a single query language. Figure 1 depicts
an example of a typical multi-model query in the social
commerce [17]: For a given person p(id=56) and product
brand b(“Nike”), find p’s friends who have bought products
in brand b, and return their feedback which contains prod-
uct’s reviews with the 5-star rating. This query involves
three data models: customer with friends (Graph), order
embedded with an item list (JSON), and customer’s feed-
back (Relation).

Database benchmark becomes an essential tool for the
evaluation and comparison of DBMSs since the advent of
Wisconsin benchmark [5] in the early 1980s. Since then,
many database benchmarks have been proposed by academia

Proceedings of the VLDB 2018 PhD Workshop, August
27, 2018. Rio de Janeiro, Brazil. Copyright (C) 2018 for
this paper by its authors. Copying permitted for private
and academic purposes

Multi-Model Data:

Social Network(Graph) Order(JSON) Feedback(Relation)
{ custID [productID|Rating|
Person tid": 1’ 33 85 5
g "customer_id": 33,
"total_price": 135, 56 86 4
"items": [
{"product_id": 85, 101 87 4
"brand": "Nike"},
{"product_id": 86, T & g
"brand":"Adidas"} 145 88 5
}] 145 89 4

ArangoDB AQL:

FOR friend IN 1..1 OUTBOUND Personld/56 KnowsGraph

FOR order IN Order

FOR feedback IN Feedback

FILTER order.customer_id==friend._id AND

BrandName/"Nike" IN order.items[*].brand AND
friend._id==feedback.custID AND
feedback.Rating==5

RETURN {person:friend, feedback:feedback}

Figure 1: An Example of Multi-Model Query. Top:
an excerpt of joined multi-model data involving
Graph, JSON, and Relation. Bottom: the same
query as above, written in the ArangoDB AQL
query language.

and industry for various evaluation goals, such as TPC-X
series for RDBMSs and data warehouses, OO7 [2] bench-
mark for object-oriented DBMSs, and XMark [16] for XML
DBMSs. More recently, The NoSQL and big data move-
ments in the late 2000s brought the arrival of the next gen-
eration of benchmarks, such as YCSB benchmark [4] for
cloud serving systems, LDBC [6] and Rbench [15] bench-
marks for Graph and RDF DBMSs, BigBench [8] benchmark
for big data systems. Unfortunately, these benchmarks are
not well suited for the evaluation of multi-model databases
due to the lack of consideration of multiple data models, e.g.,
multi-model storage, multi-model query processing, multi-
model query evaluation. Motivated by this, my Ph.D. dis-
sertation will focus on the holistic evaluation of multi-model
databases. In general, there are three main challenges on
evaluating multi-model databases:

First, existing data generators that only involve single
model cannot be directly adopted to evaluate the multi-
model databases, and how to design a meaningful data mod-
els to mimic most cases of multi-model application remains
an open question. In this regard, we develop a new data gen-

ArangoDB [l OrientDB

The example query with two pairs of
substitution parameters respectively:

Pair A: @Personld=33,
@BrandName="Adidas"

Runtime(secs)

Pair B: @Personld=56, 0
@BrandName="Nike" Pair A Pair B

Substitution Parameters

Figure 2: The Motivation of Parameter Curation

erator to generate the correlated data in diverse data mod-
els, including Graph, JSON, XML, key-value, and tabular.
Furthermore, to simulate the data distributions in real life,
we propose a three-phase framework to generate the data
in the scenario of social commerce. Our data generator also
has good scalability because it is implemented on the top of
Hadoop and Spark, which enables us to generate the data
in parallel.

The second benchmarking challenge is the problem of Pa-
rameter Curation [9], with the goal of selecting the substitu-
tion parameters for the multi-model query template to yield
stable runtime behaviors. The rationale is that, the differ-
ent parameter values for same query template would result
in high runtime variance. For instance, in Figure 1, Per-
sonld/56 and BrandName/“Nike” with the orange color in
the AQL query are two substitution parameters that can be
replaced by other values for the example query template.
Figure 2 illustrates our experiment results with two differ-
ent pairs of substitution parameters on two representative
multi-model databases: ArangoDB [1] and OrientDB [14].
As shown in Figure 2, these parameters lead to the oppo-
site evaluation results to compare the performance between
ArangoDB and OrientDB. Interestingly, we observed the
query runtime mainly depends on the domination of data
models. For example, pair A involves relative larger inter-
mediate results of JSON while pair B takes in the larger
size of Graph. Therefore, the problem of parameter curation
for benchmarking the multi-model queries requires answer-
ing three interesting questions: (i) how to select parameters
from the data model perspective, (ii) how to cover differ-
ent workloads concerning the data model, and (iii) how to
guarantee the stable distribution of substitution parameters.
In light of this, we formalize this problem as the top-k pa-
rameter groups curation, and then propose a new algorithm,
MJFast, to select the ideal parameter groups.

The third challenge corresponds to the metrics of the
benchmark. As expected, both metrics for evaluating the
multi-model dataset (e.g., how closely the data mimic the
real heterogeneous datasets) and multi-model query (e.g.,
to what extent the queries capture the diverse multi-model
patterns) are needed. However, the disparity between data
models in the data structure and workload complexity is
a major hurdle when trying to define these new metrics.
For the dataset evaluation metrics, we intend to use the
dataset coherence and relationship specialty [15], as well as
the multi-model complexity. Regarding the metrics of multi-
model query, we define a unified metric, characterizing the
query processing concerning the data models. For instance,
the metric can be used to either measure the cost of the
nested-loop join for the relational model or assess the cost
of the shortest path matching for the graph model.

The rest of this paper is divided as follows. Section 2

presents the overview of our approach. Section 3 introduces
the methods and techniques for the data generation. Section
4 gives our method for the parameter curation. Section 5
shows the preliminary experimental results. Finally, the last
chapter summarizes this paper and outlines our future work.

2. OVERVIEW OF OUR APPROACH

Figure 3 gives an overview of our benchmarking approach,
which consists of three key components to evaluate the multi-
model query. The metadata in the repository is first passed
into the Data Generation (Section 3) component that gen-
erates the data in a unified multi-model form based on our
developed data generator. Next, the Workload Genera-
tion component generates the multi-model queries against
the data models. These multi-model queries consist of a
set of complex read-only queries that involve at least two
data models, aiming to cover different business cases and
technical perspectives. More specifically, as for business
cases, these queries fall into four main levers [10] : individ-
ual, conversation, community, and commerce. In these four
levers, common-used business cases in different granulari-
ties are rendered. Regarding technical perspectives, these
queries are designed based on the choke-point concept which
combines usual technical challenges to process the data in
multiple data models, ranging from the conjunctive queries
(OLTP) to analysis (OLAP) workloads. The final part is
the Parameter Curation (Section 4) component. It first
characterizes the multi-model query by identifying the pa-
rameters and corresponding involved data models. Then
model vectors corresponding to each parameter value are
generated. Finally, the top-k parameters for the multi-model
query are selected based on the proposed MJFast algorithm.

3. DATA GENERATION

The data generation is the cornerstone of our benchmark
and comprised of two main parts: social network genera-
tion and e-commerce data generation. The former part is
to generate the social graph, including the person entities
and knows relations, as well as their activities such as posts,
comments, and likes. This generation is based on the LDBC
SNBI6] data generator, which is a representative tool of gen-
erating data in the social network with rich semantics and
scalability. The latter one is to generate the e-commerce
data. Specifically, we propose a three-phase framework to
generate the transactions by taking into account person’s in-
terests, friendship, and social engagement. The three-phase
framework consists of purchase, propagation-purchase, Te-
purchase in the context of social commerce.

Purchase. In this phase, we consider two factors when
generating the transaction data. First, persons usually buy
products based on their interests. Second, persons owning
more interests are more likely to buy products than oth-
ers. This phase is implemented on the top of Spark SQL
using scala, which utilizes a plentiful APIs and UDFs to
output the various model simultaneously without any addi-
tional operations. Consequently, our data include five mod-
els: social network (Graph), vendor and feedback (Relation),
order (JSON), invoice (XML), product (Key-value).

Propagation-Purchase. In this phase, we incorporate
two ingredients from previous data generation: (i) person’s
basic demographic data, e.g., gender, age, location. (ii)

Data Generation

Relation,JSON,
XML,Key-value

Interests

|
|
|
|
|
|
|
|
|
|

Friendships

CLVSV Model
Propagation
Purchase

Workload Generation

Parameter Curation
-— a

| Model Vectors

Multi-Model
¥ Query

Parameters

MJFast
Algorithm

{5y Choke
[Points

]

Business
Factors

Q

@

Y Top-k
Parameters

Figure 3: Overview of our approach

friends’ transaction. The scoring function is defined as fol-
low:

Sui =Y _k x Pr(Ru; = k|A = au) + E(Ryi : Vv € N(u)) (1)
k

where Y, k X Pr(Rui = k|A = au) is the expectation of
the probability distribution of the target user u’s rating on
the target item 4, and A = {a1,az,...,am} is user attribute
set, we compute this part based on naive bayes method.
The latter part E(Ry; : VV € N(u)) is the expectation of
u’s friends’ rating distribution on the target item, in which
N (u) is the friends set of user u, and the item ¢ is from the
purchase transaction of friends.

Re-Purchase. To make fine-grained predictions by in-
corporating the customer’s social activities, we propose a
new probabilistic model, CLVSC (Customer Lifetime Value
in Social Commerce), to generate the transactions based on
the history of customer’s purchases and social activities:

CLVSC;, = E(X* | n*,2',n,m,a, B,7,0) 9

x (E(M |p,q,v,mg,x) + E(S|5,0,7)) @
where i and b are the customer and brand index, respec-
tively, E(X™|-) is the expected number of behaviors, and
E(M |-) is the expected monetary value, parameters in these
two parts are for the beta-geometric/beta-binomial model [7],
and E(S|-) is the expected number of customer’s social ac-
tivities, in which the parameters are for the Poisson-gamma
model.

4. PARAMETER CURATION

4.1 Preliminaries

In this section, we describe the preliminaries for the pa-
rameter curation problem. We assume that the selection of
parameters for a multi-model query should guarantee the
following properties: (i) the query result should correspond
to involved data models and their combinations, (ii) the size
of involved data models should be bounded in each class, (iii)
the selected parameters should cover different classes in the
whole parameter space.

To satisfy the property (i), we propose a vector-based ap-
proach to represent parameter values from the multi-model
perspective. Specifically, we compute sizes of all interme-
diate results correspond to a parameter value based on the
permutation of data models. For instance, given the query
in the Section 1, and a parameter pair (p, b), we compute a
non-zero vector (G,J,GJ,GJR), where G stands for Graph,
J for JSON,R for Relation, GJ refers to the combination

of these two models, i.e., persons who are p’s friends and
have bought products in brand b. This method allows us
to represent the model-oriented results that are independent
of the databases. The definition of the model vector is as
follow:

Definition 1. Model Vector: In a multi-model query,
each model vector is defined as w {c1, ., Ck, ., cn}, where cy is
k-th intermediate result size against involved data models or
their combinations, cy is the final result size. The length of
w is between [3, 2™-1], where m is the number of the data
model.

Regarding property (ii), we assume that a representative
class in the whole parameter space consists of two traits: the
considerable number of model vectors, and the bounded dis-
tance between these vectors. Hence, we define the qualified
class as the candidate parameter group:

Definition 2. Candidate parameter group: In the pa-
rameter space, the candidate parameter group is the space
with radius € covering at least v model vectors.

To fulfill the property (iii), we find the k farthest candi-
date parameter groups. Therefore, the parameter curation
problem boils down to finding the top-k candidate param-
eter groups, with the maximum number of model vectors,
and maximum distance between groups.

4.2 Problem Definition and Algorithm

We now formalize the problem as follow:

Top-k Parameter Groups Curation: Given the multi-
model query M@ with parameter space P that is a set of N
points in R?, each point in P is a d-dimensional multi-model
vector, the distance between two groups is the Euclidean
distance between centroid of groups. The objective is to
select k disjoint candidate parameter groups S,y C P such

that the score S
k k

S(Sk) = aZDensity(Sk)/N1 + ﬂZDistance(Sk)/Ng (3)
1 1

is maximized, where the a and (reflects the importance
of density and distance, which has a + 8 = 1. N; and N2
are the normalization constants that normalize the sum of
density and the sum of distance between 0 to 1, respectively.

The problem of parameter curation is non-trivial because
it includes two NP-coMPLETE problems: top-k highest dense
regions problem and top-k weighted maximum vertex cover
problem. Therefore, we propose a greedy algorithm, called
MJFast, to tackle this problem. The main idea of MJFast is
first to gather the similar candidate parameter groups into

the cluster, then chooses the top-k densest candidate param-
eter groups from each cluster. Finally, the top-k farthest
groups from all groups are returned. In specific, we propose
a new data structure, snowball, to store the strongly closed
candidate parameter groups. Snowball starts with an ar-
bitrary candidate parameter group in which the centroid is
a model vector. Then it recursively rolls if other qualified
centroid vectors exist among the group. Since each snowball
only maintains top-k densest groups at each iteration, the
search space will be reduced dramatically. In MJFast, we
build a k-d tree to speed up the searches for nearest neigh-
bor, thus the average search time is O(logn). In the worst
case that all points of P are within the same group, the time
complexity is O(nlogn).

5. EXPERIMENT RESULTS

5.1 Data Generation

In the case of efficiency, experiment result suggests the
data generator can generate 1G multi-model dataset in 5
minutes, on a single 8-core machine running MapReduce and
Spark in “pseudo-distributed” mode. In terms of scalability,
we successfully generate 10G dataset within 20 minutes on
a cluster with three nodes.

5.2 Parameter Curation

We use two metrics to compare the MJFast with the ran-
dom method. First, to measure the stability of the method,
we compare the KL-divergence Dk between two groups of
parameters for a fixed k. The distribution is the discrete dis-
tribution of model-dominating. For example, when k is 5,
the two model-dominating distributions are (G:4, J:1, R:0)
and (G:1, J:1, R:3) respectively, so the Dgy, is 1.11. Sec-
ond, we proceed with experiments on ArangoDB to compare
the total runtime variance (TRV) between two groups of pa-
rameters. As shown in Table 1b, the parameters curated by
MJFast can not only yield the small value of the Dk, but
also result in low runtime variance as the k increase.

5.3 Preliminary Benchmarking Results

Table 1a illustrates the preliminary results for benchmark-
ing the multi-model queries on ArangoDB and OrientDB.
We conduct the experiments on a quad-core Xeon E5540
server with 32GB of RAM and 500GB of disk. All of bench-
mark queries involve at least two models, in particular, Q1,
Q2, Q5 are Graph-dominating workloads, and Q3, Q4 are
JSON-dominating workloads. The results show that, in
multi-model context, OrientDB outperform ArangoDB re-
garding the Graph-dominating workload, and ArangoDB is
better at JSON-dominating workload. This also suggests
that the multi-model capacities of these two databases de-
pend on their main models. i.e., ArangoDB is originally
a document-oriented database, and OrientDB is a natively
graph database.

6. CONCLUSION AND FURTURE WORK

Benchmarking the multi-model databases is a challenging
task since current public data and workloads can not well
match the various cases of real applications. To date, we
have developed a scalable data generator to provide data in
multiple data models, involving Graph, JSON, XML, key-
value, and tabular. MJFuast algorithm, which is proposed to

[Query | QL(G&J) | Q2(G&R) [Q3(J&C) | Q4(JER) | Q5(G&I&R) |
[ArangoDB | 0452 | 7.134 | 16.566 | 3.341 | 88534 |
| OrientDB_| 0.187 | 2.360 | 24.653 | 6.324 | 12.653 |

(a) Mean runtime of multi-model queries (s)

Random MJFast
Dkr | TRV | Dxr | TRV
k=5 0.89 | 23.0s 0 0.5 s
k=10 | 0.19 | 56.7s | 0.02 | 1.2 s
k=20 | 0.11 | 786s | 0.03 | 2.5 s

(b) Results for Parameter Curation

Table 1: Preliminary Experiment Results

address the problem of parameter curation, ensures that our
performance analysis is holistic and valid.

The general plan to complete my Ph.D. dissertation is to
focus on the three components shown in Figure 3. First,
the data schema and corresponding model in the real ap-
plication could be changed, we will introduce this process
in data generation. Second, we will optimize the MJFast
algorithm by incorporating the sampling-based method to
avoid the computation of whole parameter space. Finally,
we will finalize the multi-model query template and the uni-
fied metric, and then conduct a set of experimental study on
multi-model databases. Another extension is to investigate
the ACID guarantees on multi-model transactions.

Acknowledgement This work is supported by Academy of
Finland (310321), China Scholarship and CIMO Fellowship.

7. REFERENCES

[1] ArangoDB. Highly available multi-model NoSQL database.
https://www.arangodb.com/, 2017.

[2] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007
benchmark. In ACM SIGMOD, pages 12-21, 1993.

[3] J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, and X. Zhou.
Big data challenge: a data management perspective. Frontiers
Comput. Sci., 7(2):157-164, 2013.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
ACM SoCC, pages 143-154, 2010.

[5] D. J. DeWitt. The wisconsin benchmark: Past, present, and
future. In The Benchmark Handbook, pages 119-165. 1991.

[6] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev,
A. Prat-Pérez, M. Pham, and P. A. Boncz. The LDBC Social
Network Benchmark: Interactive Workload. In SIGMOD 2015.

[7] P. S. Fader. Customer-base analysis with discrete-time
transaction data. PhD thesis, University of Auckland, 2004.

[8] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte,
and H. Jacobsen. BigBench: Towards an Industry Standard
Benchmark for Big Data Analytics. In ACM SIGMOD, 2013.

[9] A. Gubichev and P. Boncz. Parameter curation for benchmark
queries. In TPCTC, pages 113-129, 2014.

[10] Z. Huang and M. Benyoucef. From e-commerce to social
commerce: A close look at design features. ECRA, 2013.

[11] J. Lu. Towards Benchmarking Multi-Model Databases. In
CIDR, 2017.

[12] J. Lu and I. Holubova. Multi-model data management: What’s
new and what’s next? In EDBT, 2017.

[13] J. Lu, Z. H. Liu, P. Xu, and C. Zhang. UDBMS: road to
unification for multi-model data management. CoRR,
abs/1612.08050, 2016.

[14] OrientDB. Distributed Multi-model and Graph Database.
http://orientdb.com/orientdb/, 2017.

[15] S. Qiao and Z. M. Ozsoyoglu. Rbench: Application-specific
RDF benchmarking. In ACM SIGMOD, 2015.

[16] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,

I. Manolescu, and R. Busse. XMark: A Benchmark for XML
Data Management. In VLDB, pages 974-985, 2002.

[17] K. Z. Zhang. Consumer behavior in social commerce: A

literature review. Decision Support Systems, 2016.

