
b

UDBMS: UNIFIED DBMS FOR
BOTH RELATION AND NOSQL DATA

Jiaheng Lu1,
Heli Helskyaho2,
Pengfei Xu3

1 jiaheng.lu@helsinki.fi,
2 heli.helskyaho@miracleoy.fi,
3 pengfei.xu@helsinki.fi

INTRODUCTION

This project investigate a new approach for the unified storage and querying
for both relational and NoSQL data. Our approach will reduce integration
issues, simplify operations, and eliminate migration issues between relational
and NoSQL data. We will develop a prototype to store and query both
relational and NoSQL data, based on the techniques proposed, to support
emerging applications such as social media marketing, social search and
knowledge bases. A breakthrough in this subject will advance several fields,
including big data, theory of computation, parallel computation, and social
network analysis.

Figure 1: Existing approaches handle data
separately by type

Figure 2: Our approach handles multiple data
type in unified entity

Relational databases support the relational data model, generally with SQL as
query language. In a similar way, the first-generation NoSQL databases each
support a single data model, such as a document, graph, or column-oriented
model, along with a specialized query language. In these systems, features
tend to be interwoven among all the levels, with the data model hard-wired
in the middle. The restriction to a single data model limits the range of
use cases the database can handle well: different data models are better
suited to different use cases, and applications often require more than one
data model for different data types. As a result, developers face a choice
between shoehorning all of their application’s data into an inappropriate
model and integrating multiple databases into their application’s backend.
However, rather than having to integrate multiple databases, it’s far better if
a developer can build multiple data models easily and efficiently on a single
storage substrate, which becomes our research target.

This project is divided into three main stages and five tasks, as in Figure 3.

Figure 3: Stages and tasks of UDBMS project

TASK 1 AND 2: BENCHMARKING AND DATA STORAGE

We will develop a benchmark system for unified databases. Our proposal
will cover data model not only account for the velocity and volume, but also
account for the variety, for which the 3Vs features are indivisible in big data.
In particular, we will develop a scenario of e-commerce application to meet
the needs of different user involving structured data, semi-structured data and
unstructured data. A high-level overview of the data model is presented in
Figure 4.

The data model for UDBMS Benchmark includes Relational data, XML data,
Graph data, and JSON data. Since the UDBMS Benchmark provides a variety
of data types, it can also generate varied SQL query tailored to user’s special
needs. We will create more than 30 business questions for the UDBMS
workload, the format will like “Given a product, find the top 30 customers
who ordered the largest amount of this product”.

Customers

Vendors Invoices

Social 
networks

RegUsers

Orders Products

Relational
XML

Graph
JSON

Figure 4: Example of UDBMS Storage with four types of data

TASK 3: DATA QUERY

The new system structure will have a middleware layer (as in Figure 5) that
provides CRUD interfaces, while every data source has a wrapper that provide
solutions for those interfaces. The middleware also maintains a schema table
for each known elements in the whole system, and is responsible for updating
the schema to fit any new incoming data. We will also propose a new indexing
structure that is generic for relational, semi-structured and graph data. The
new structure is able to expose semantic relations within data, enabling a rich
validation feature for incoming queries.

Unified Middleware 

Client 

CRUD queries in unified query language 

Query language Processor Schema Manager 

Unified Storage and Indexing 

Spark SQL Layer 

Relation 

Dataset 

SQL 
Wrapper 

JSON 
Wrapper 

 

XML 

Wrapper 

 

… 

Result 

Native queries Native results 

Feedback 

Validate queries 

Execute unified queries Unified results 
Resolve schema updates 

JSON 

Dataset 

XML 

Dataset 
… 

Dataset 

Figure 5: The UDBMS query middleware

TASK 4: SCHEMA EVOLUTION

Different data sources provide different formulas and constraints. Our further
research will develop an effective schema that be able to:

I Fit different schemas in all data sources.
I Provide views for data sources do not have schema.
I Semantic-level validation for queries at compile time.
I Maintain update to schema according to incoming data.
I Resolve or provide suggestions for query errors brought by schema
updates.

BRIEF COMPARISONS

Name of
DBMS

Models Query language Flexible
Schema

Query
Validations

UDBMS Relational, JSON,
XML, graph

SQL-like Yes Yes

Oracle Relational, JSON,
XML

SQL,
JSONPath,
XQuery

Yes No

MongoDB JSON API Yes Yes
Marklogic Serializable, RDF,

binary
XPath, XQuery,

SQL-like
No No

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA
MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN

FACULTY OF SCIENCE

jiaheng.lu@helsinki.fi
heli.helskyaho@miracleoy.fi
pengfei.xu@helsinki.fi

