
b

Efficient Taxonomic Similarity Joins with
Adaptive Overlap Constraint

Pengfei Xu and Jiaheng Lu
Department of Computer Science, University of Helsinki, Finland

ABSTRACT
Established similarity join approaches usually deal with synthetic differences
like typos and abbreviations, but neglect the semantic relations between
words. Such relations, however, are helpful for obtaining high-quality join-
ing results. In this paper, we leverage the taxonomy knowledge (i.e., a
set of IS-A hierarchical relations) to define a similarity measure which finds
semantic-similar records from two datasets. Based on this measure, we
develop a similarity join algorithm with prefix filtering framework to prune
away irrelevant pairs effectively. Our technical contribution here is an algo-
rithm that judiciously selects critical parameters in a prefix filter to maximise
its filtering power, supported by an estimation technique and Monte Carlo
simulation process.

SIMILARITY MEASURE
Let S : {s1, · · · , si} and T : {t1, · · · , tj} be two sets of nodes from a
hierarchical taxonomy. Let s ∈ S and t ∈ T be two nodes.
I Similarity between two nodes is defined based on their lowest common
ancestor (LCA):

TS(s, t) = |LCA(s, t)|
max(|s|, |t|)

I Based on node similarity, set similarity aggregates all distinct node
similarities:

GTS(S ,T) = W (S ,T)
max(|S|, |T |) =

max
∑

p
∑

q IpqTS(sp, tq)
max(|S|, |T |)

where S (T) contains p (q) nodes, Ipq is an indicator variable (i)
controlling whether to select the edge (sp, tq), and (ii) ensures any of sp
or tq is used at most once.

Solving for the value of W in GTS is to find the maximum weight matching
in a bipartite graph. This can be done in polynomial time using Hungarian
algorithm [1].

restaurants

type of
restaurants

coffeehousebar

food

coffee

coffee
drinks

espressolatte

Italy

Turin

arteries of
Turin

Via Nizza

Wikipedia categories

Taxonomic similarity between two sets/strings:
(0.75 + 0.8 + 0.6) / 3 = 0.717

coffeehouse latte Turin

espresso bar Via Nizza

0.75
0.8

0.6

string 1

string 2

Figure 1: Example of a simplified hierarchical taxonomy and similarity calculation.

Example
Take two strings in Figure 1 as an example. Since the three most-similar
node pairs are (“coffeehouse”, “bar”), (“latte”, “espresso”), and (“Turin”,
“Via Nizza”), the GTS similarity between two strings becomes 0.717 (=
(0.75 + 0.8 + 0.6)/3). Note that the distinctness forbid any node from
being selected more than once, e.g., selecting both (“latte”, “espresso”)
and (“latte”, “Turin”) are not allowed.

ACKNOWLEDGEMENT
This work is supported by the Academy of Finland (310321). Contact author
and email: jiaheng.lu@helsinki.fi.

ADAPTIVE PREFIX FILTERING
We adopt the popular prefix filtering framework:

I The definition of GTS states that two similar sets must have some
similar nodes (say τ).

I Each of τ pairs must have at least TS(si , tj) = θ|T |−τ+1
|S|−τ+1 similarity.

I Since TS depends on |LCA|, we can get two nodes similarity from their
LCA. To find all nodes having a deep-enough LCA, the prefix filtering
takes place.

I Each node can only send its deeper-than θ|S|−τ+1
|S|−τ+1 ancestors to the index,

because having a shallow LCA means not similar enough.
I The prefix filtering pick all strings having τ similar node pairs as
candidates.

PARAMETER SELECTION
Different τ leads to various prefix length, the number of candidates, and ulti-
mately, the join time. Testing all τ ’s on the whole dataset is slow. Hence, we
use an estimation algorithm which

I Use independent Bernoulli sampling [3] to get small datasets.
I Run our join algorithm on the sample, with multiple τ ’s.
I Scale the running time up to full datasets.
I Worst case time grows fast when sample grows due to the Cartesian
product. Therefore, our estimator contains multiple stages, each with a
small sample size.

I The estimator continuously refine the confidence interval (CI) for each τ ,
and terminate when the best τ is identified.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

10

20

30

Number of iterations

Es
t.

co
st

(u
ni
t)

τ = 2 τ = 3 τ = 4

Figure 2: Illustration of the estimation process. Solid lines are estimated means, shaded areas
are CI’s, dotted lines are empirical real values.

PERFORMANCE
I Performance of our AP-Join v.s. the state-of-art K-Join [2]

Dataset Algorithm # Pairs (108) # Candidates (106) Running time (min)
0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

Wiki articles AP-Join 0.42 0.08 0.01 11.52 3.04 0.27 10.03 2.64 0.55
K-Join 0.87 0.25 0.07 28.42 8.35 1.98 22.28 6.65 1.74

OHSUMED AP-Join 1.08 4.97 1.72 63.43 0.64 0.26 41.81 4.44 1.67
K-Join - 2.13 0.86 - 115.58 38.42 - 80.01 25.33

I Estimation accuracy and speed

Dataset Accuracy from 128 runs varies θ Estimation time varies θ (s)
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Wiki articles 92.03% 100% 100% 100% 2.58 1.69 1.74 1.51
OHSUMED 96.09% 99.22% 90.63% 100% 4.63 1.10 2.04 1.42

REFERENCES
J. Munkres, Algorithms for the Assignment and Transportation Problems, JSIAM, 5
(1957), pp. 32–38.
Z. Shang, Y. Liu, G. Li, and J. Feng, K-Join: Knowledge-Aware
Similarity Join, TKDE, 28 (2016), pp. 3293–3308.
D. Vengerov, A. C. Menck, M. Za\"\it, and
S. Chakkappen, Join Size Estimation Subject to Filter Conditions, PVLDB, 8
(2015), pp. 1530–1541.

Contact: pengfei.xu@helsinki.fi

