I/O-Efficient Big Graph Computation

Ge Yu
Northeastern University, China
yuge@cse.neu.edu.cn
Outline

1. Background & Challenges
2. Push & Pull Style Message Optimization
3. Open source Hybrid-Graph System
4. Work in Progress
1. Background

• Big Graph
 – Social network, scientific computations, ...
 – Billion vertices & trillion edges, still growing
 – Iterative algorithms: PageRank, Shortest Path
Background

• How to handle “Big Graph”?
 – Graph data
 “There are 10.4 billion daily active users on Facebook” (Dec, 2015)
 – Message data

<table>
<thead>
<tr>
<th>Solution</th>
<th>Benefits</th>
<th>Problems</th>
<th>Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-machine+Disk</td>
<td>Ease of Management</td>
<td>Poor scalability</td>
<td>GraphChi, TurboGraph</td>
</tr>
<tr>
<td>Cluster + memory</td>
<td>High efficiency</td>
<td>Scalability vs. Expense</td>
<td>Pregel, GPS, GraphLab</td>
</tr>
<tr>
<td>Cluster + disk</td>
<td>Scalability</td>
<td>I/O-inefficiency</td>
<td>Gbase, Giraph, MOCgraph, Pregelix</td>
</tr>
</tbody>
</table>
Background

- **BSP based Distributed Graph Processing Systems**
 - Pregel[1], Hama[2], Giraph[3], GPS[4], ...
 - Spark[5], Bagel[5], GraphX[6]
 - GraphLab[7], PowerGraph[8]
Background

- **Example of Computation Expense**
 - Twitter-2010 ($|V| = 41.7$ million, $|E| = 1.4$ billion)
 - Graph data: 13GB
 - Message data: ≥ 13GB
 - Amazon EC2

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Unit Price (per month)</th>
<th>Twitter-2010 (13+13GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>$9.36/GB</td>
<td>$244</td>
</tr>
<tr>
<td>SSD</td>
<td>$0.10/GB</td>
<td>$2.6</td>
</tr>
<tr>
<td>HDD</td>
<td>$0.05/GB</td>
<td>$1.3</td>
</tr>
</tbody>
</table>
Background

• Optimizations for distributed memory systems
 – **Partition:**
 METIS[9], LDG[10], vertex-cut[8], load balance[11,12]
 – **Message Management:**
 combiner[1], LALP[4]
 – **Convergence:**
 asynchronous[7,8]/block-centric update[13,14]
 – **Fault-tolerance:**
 checkpoint[1], vertex replication[15]

All these optimizations are NOT designed for I/O efficient computation in disk-resident environments!
Challenges

• **I/O-inefficiency for Disk-based systems**
 – Graph data IO Cost
 read & write vertices
 read edges
 – Message data IO Cost
 read & write

• **Other problems**
 – Graph partitioning
 – Convergence
 – Fault-tolerance
 – Data update and incremental maintenance
2. Push vs. Pull

- Two Existing data operations: Push and Pull
- **PUSH Approach** *(e.g. PageRank on Giraph)*
 Messages are generated when updating vertices at the i-th iteration, but used in the (i+1)-th iteration
 - I/O of graph data: seq. reads & writes
 - I/O of message data: random writes & seq. reads

Favorite scenario:
More Messages in memory
Push vs. Pull

- **PULL Approach** *(e.g. PageRank on modified PowerGraph)*
 - Messages are generated on demand of vertex updates and then consumed immediately at the \((i+1)\)-th iteration
 - I/O of graph data: random reads & seq. writes
 - I/O of message data: none

Favorite scenario:
More Graph data in memory

<table>
<thead>
<tr>
<th>scenarios</th>
<th>PageRank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>livej</td>
</tr>
<tr>
<td>original</td>
<td>3.0</td>
</tr>
<tr>
<td>ext-mem</td>
<td>3.1</td>
</tr>
<tr>
<td>ext-edge</td>
<td>3.9</td>
</tr>
<tr>
<td>ext-edge-v3</td>
<td>4.5</td>
</tr>
<tr>
<td>ext-edge-v2.5</td>
<td>654.7</td>
</tr>
</tbody>
</table>
Existing systems

- **Distributed systems**
 - **Memory-based**
 PUSH/PULL
 - **Disk-based**
 PUSH

<table>
<thead>
<tr>
<th>Name</th>
<th>PUSH</th>
<th>PULL</th>
<th>DISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giraph++</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blogel</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GiraphX</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRE</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mizan</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naiad</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregel</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinity</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faunus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PEGASUS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gbase</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Giraph</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GraphX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MOCgraph</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hama</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Pregelix</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Surfer</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Chronos</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Kineograph</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Pregel+</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Kylin</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Seraph</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>GraphLab</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PowerGraph</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LFGraph</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Our Hybrid Solution

• Switching between push and pull adaptively.

• Challenges
 – Existing pull-based approaches are I/O-inefficient.
 – How to efficiently combine push and pull?

• Contributions
 – **b-pull**: pull messages in block-centric, not vertex-centric
 – **VE-BLOCK**: data structure for disk-based graph data
 – **Hybrid engine**: a seamless switching mechanism an effective performance prediction model

Block-centric Pull (b-pull)

- Strength
 - avoid message data read & write
 - reduce source vertex access costs
 - reduce pull request communication costs
Graph Storage: VE-BLOCK

- **VE-BLOCK**
 - VBlocks
 - Ebblocks
 - Metadata
Block-centric Pull (b-pull)

- **Pulling messages in VBlocks**
 - 1) Receiver side:
 - sending pull requests for one local Vblock b_i
 - 2) Sender side:
 - producing and sending messages for b_i on demand by reading Vblocks b_j and Eblocks g_{ji}
 - 3) Receiver side:
 - consuming messages immediately and updating values of vertices in b_i

One iteration = Repeat 1)-3) for every Vblock b_i
Hybrid-Decomposition

• Decomposing push and b-pull
 – push: load() ⇆ update() ⇆ pushRes()
 – b-pull: pullRes() ⇆ update()
 shared update()

• Graph storage
 – push: Vblocks + edges (in adjacency list)
 – b-pull: Vblocks + edges (in Eblocks)
 shared Vblocks and two replicas of edges
Hybrid-Switching Operations

- Switching between b-pull and push
 - b-pull \Rightarrow push: pulling & pushing messages
 - push \Rightarrow b-pull: no messages are generated
Hybrid-Switching Timing

- Performance metric: $Q = Q_{push} - Q_{b-pull}$

$$Q^t = \frac{M_{coByte_m}}{s_{net}} + \frac{IO(M_{disk})}{s_{rw}} - \frac{IO(V_{rr}^t)}{s_{rr}} + \frac{IO(E^t) + IO(M_{disk}) - IO(\mathcal{E}^t) - IO(F^t)}{s_{sr}}$$

$Q^t > 0$, b-pull, otherwise, push

- How to predict Q?

 Metrics collected at the t-th superstep are regarded as the predicted values on superstep $(t+x)$. (based on the methods in Ref [12] Z. Shang et al., ICDE2013)

- Default Prediction interval $x=2$
 - Prediction accuracy $\propto 1/x$, $x \in N^+$
 - $x \geq 2$, to balance the cost and gain
4. HybridGraph System

- Architecture

https://github.com/HybridGraph/HybridGraph
HybridGraph System

- Console of Running one job
Evaluation

• Compared solutions
 – push: Giraph
 – pushM: MOCgraph (message online computing)
 – pull: GraphLab PowerGraph (vertex-cut optimizations)
 – b-pull: our block-centric pull
 – hybrid: our hybrid solution on top of push and b-pull

• Cluster (31 nodes)
 – Local cluster: HDDs
 – Amazon cluster: SSDs

<table>
<thead>
<tr>
<th>Cluster</th>
<th>RAM</th>
<th>Disk</th>
<th>s_{rr}/s_{rw}/s_{sr}</th>
<th>s_{net}</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>6.0GB</td>
<td>500GB</td>
<td>1.177/1.182/2.358MB/s</td>
<td>112MB/s</td>
</tr>
<tr>
<td>amazon</td>
<td>7.5GB</td>
<td>30GB</td>
<td>18.177/18.194/18.270MB/s</td>
<td>116MB/s</td>
</tr>
</tbody>
</table>
Evaluation

Dataset

Table 4: Real Graph Datasets (M: million)

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
<th>Degree</th>
<th>Type</th>
<th>Disk size</th>
</tr>
</thead>
<tbody>
<tr>
<td>livej</td>
<td>4.8M</td>
<td>68M</td>
<td>14.2</td>
<td>Social networks</td>
<td>0.50GB</td>
</tr>
<tr>
<td>wiki</td>
<td>5.7M</td>
<td>130M</td>
<td>22.8</td>
<td>Web graphs</td>
<td>0.98GB</td>
</tr>
<tr>
<td>orkut</td>
<td>3.1M</td>
<td>234M</td>
<td>75.5</td>
<td>Social networks</td>
<td>1.59GB</td>
</tr>
<tr>
<td>twi</td>
<td>41.7M</td>
<td>1,470M</td>
<td>35.3</td>
<td>Social networks</td>
<td>12.90GB</td>
</tr>
<tr>
<td>fri</td>
<td>65.6M</td>
<td>1,810M</td>
<td>27.5</td>
<td>Social networks</td>
<td>17.00GB</td>
</tr>
<tr>
<td>uk</td>
<td>105.9M</td>
<td>3,740M</td>
<td>35.6</td>
<td>Web graphs</td>
<td>33.02GB</td>
</tr>
</tbody>
</table>

![Disk Size (GB)](chart.png)
Evaluation

- **Limited memory (local cluster with HDDs)**
 - b-pull vs. push: up to 35x
 - b-pull vs. pushM: up to 16x
 - b-pull vs. pull: up to 239x
 - hybrid vs. b-pull: up to 1.6x

(a) Runtime of PageRank

(b) Runtime of SSSP
Evaluation

- Limited memory (Amazon cluster with SSDs)
 - b-pull vs. push: up to 56x
 - b-pull vs. pushM: up to 15x
 - b-pull vs. pull: up to 343x
 - hybrid vs. b-pull: up to 1.5x

(a) Runtime of PageRank

(b) Runtime of SSSP
5. Work in progress (1)

- Partitioning graph for I/O-efficient computation
 - Besides reducing # of cut-edges and balancing load, also considering reducing I/O costs of graph data index
 - Building a reverse graph G and Clustering vertices on G based on the similarities of outgoing edges (for I/O costs)
 - Assigning clustered vertex blocks among machines using METIS (for cut-edges and load balance)
Work in progress (2)

- Prioritized block scheduling for b-PULL
 - Asynchronous vertex update to speed up message propagation
 - Prioritized block scheduling instead of vertex scheduling to avoid random access to vertices
 - Estimating block priority based on dynamical block-dependency graph
Work in progress (3)

- Lightweight Fault-tolerance using b-pull
 - Archiving local historical data (vertices, not messages)
 - Writing distributed checkpoint data in parallel with updating vertices (not a blocking way)
 - For failure recovery, re-pulling messages for lost vertices and updating lost vertex values based on b-pull
Work in progress (4)

• More functions for various applications
 – Offering a library implementing the typical iterative algorithms (graph computation, matrix analysis and data mining)
 – Friendly interface and visualization
 – Incremental computation and index maintenance for graph data updates
 – Support for temporal graphs and hypergraphs
References

Thanks!