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• Big Graph
– Social network, scientific computations, …
– Billion vertices & trillion edges, still growing
– Iterative algorithms: PageRank, Shortest Path

1. Background



Background
• How to handle “Big Graph” ?

– Graph data
“There are 10.4 billion daily active users on Facebook”

(Dec, 2015)
– Message data

Graph data & message data on disk like Giraph

Solution Benefits Problems Systems
Single-machine+
Disk

Ease of
Management

Poor
scalability

GraphChi,
TurboGraph

Cluster + memory High efficiency Scalability
vs. Expense

Pregel, GPS,
GraphLab

Cluster + disk Scalability I/O-
inefficiency

Gbase, Giraph,
MOCgraph,
Pregelix



• BSP based Distributed Graph Processing Systems
– Pregel[1], Hama[2], Giraph[3], GPS[4], …
– Spark[5], Bagel[5], GraphX[6]
– GraphLab[7], PowerGraph[8]
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Background
• Example of Computation Expense

– Twitter-2010 (|V|=41.7million, |E|=1.4billion)
graph data: 13GB
message data: >=13GB

– Amazon EC2

Storage Type Unit Price
(per month)

Twitter-2010
(13+13GB)

Memory $9.36/GB $244

SSD $0.10/GB $2.6

HDD $0.05/GB $1.3



• Optimizations for distributed memory systems
– Partition:

METIS[9], LDG[10], vertex-cut[8], load
balance[11,12]

– Message Management:
combiner[1], LALP[4]

– Convergence:
asynchronous[7,8]/block-centric update[13,14]

– Fault-tolerance:
checkpoint[1], vertex replication[15]

Background

All these optimizations are NOT designed for I/O efficient

computation in disk-resident environments!



• I/O-inefficiency for Disk-based systems
– Graph data IO Cost

read & write vertices
read edges

– Message data IO Cost
read & write

• Other problems
– Graph partitioning
– Convergence
– Fault-tolerance
– Data update and incremental maintenance

Challenges



2. Push vs. Pull
• Two Existing data operations : Push and Pull
• PUSH  Approach (e.g. PageRank on Giraph)

Messages are generated when updating vertices
at the i-th iteration, but used in the (i+1)-th iteration
– I/O of graph data: seq. reads & writes
– I/O of message data: random writes & seq.reads

Favorite scenario:
More Messages in memory



Push vs. Pull
• PULL Approach (e.g. PageRank on modified PowerGraph)

Messages are generated on demand of vertex updates
and then consumed immediately at the (i+1)-th iteration
– I/O of graph data: random reads & seq. writes
– I/O of message data: none

Favorite scenario:
More Graph data in memory



• Distributed systems
– Memory-based

PUSH/PULL
– Disk-based

PUSH

Existing systems



• Switching between push and pull adaptively.
• Challenges

– Existing pull-based approaches are I/O-inefficient.
– How to efficiently combine push and pull?

• Contributions
– b-pull: pull messages in block-centric, not vertex-centric
– VE-BLOCK: data structure for disk-based graph data
– Hybrid engine: a seamless switching mechanism an

effective performance prediction model

Our Hybrid Solution

• Z. Wang, Y. Gu, Y. Bao, G. Yu, J.  Yu. Hybrid Pulling/Pushing for I/O-
Efficient Distributed and Iterative Graph Computing.  to appear in SIGMOD
2016.



Block-centric Pull (b-pull)
• Strength

– avoid message data read & write
– reduce source vertex access costs
– reduce pull request communication costs



Graph Storage: VE-BLOCK
• VE-BLOCK

– VBlocks
– Eblocks
– Metadata



• Pulling messages in VBlocks
– 1) Receiver side:

sending pull requests for one local Vblock bi

– 2) Sender side:
producing and sending messages for bi on demand
by reading Vblocks bj and Eblocks gji

– 3) Receiver side:
consuming messages immediately and updating values
of vertices in bi

One iteration = Repeat 1)-3) for every Vblock bi

Block-centric Pull (b-pull)



• Decomposing push and b-pull
– push: load()à update()à pushRes()
– b-pull: pullRes()à update()
shared update()

• Graph storage
– push:    Vblocks + edges (in adjacency list)
– b-pull:  Vblocks + edges (in Eblocks)
shared Vblocks and two replicas of edges

Hybrid-Decomposition



• Switching between b-pull and push
– b-pullà push:   pulling & pushing messages
– push à b-pull: no messages are generated

Hybrid-Switching Operations



• Performance metric: Q=Q(push)-Q(b-pull)

Qt > 0, b-pull, otherwise, push

• How to predict Q?
Metrics collected at the t-th superstep are regarded as the predicted

values on superstep (t+x). (based on the methods in Ref [12] Z.
Shang et al., ICDE2013)

• Default Prediction interval x=2
– Prediction accuracy∝ 1/x, x ∈ N+

– x >= 2, to balance the cost and gain

Hybrid-Switching Timing



• Architecture

4. HybridGraph System

• https://github.com/HybridGraph/HybridGraph



HybridGraph System
• Console of Running one job



Evaluation
• Compared solutions

– push: Giraph
– pushM: MOCgraph (message online computing)
– pull: GraphLab PowerGraph (vertex-cut optimizations)
– b-pull: our block-centric pull
– hybrid: our hybrid solution on top of push and b-pull

• Cluster (31 nodes)
– Local cluster: HDDs
– Amazon cluster: SSDs



Evaluation
• Dataset



Evaluation
• Limited memory (local cluster with HDDs)

– b-pull vs. push:         up to 35x
– b-pull vs. pushM:     up to 16x
– b-pull vs. pull:           up to 239x
– hybrid vs. b-pull:      up to 1.6x



Evaluation
• Limited memory (Amazon cluster with SSDs)

– b-pull vs. push:         up to 56x
– b-pull vs. pushM:     up to 15x
– b-pull vs. pull:           up to 343x
– hybrid vs. b-pull:      up to 1.5x



5. Work in progress (1)
• Partitioning graph for I/O-efficient computation

– Besides reducing # of cut-edges and balancing load, also
considering reducing I/O costs of graph data index

– Building a reverse graph G and Clustering vertices on G
based on the similarities of outgoing edges (for I/O costs)

– Assigning clustered vertex blocks among machines using
METIS (for cut-edges and load balance)



Work in progress (2)
• Prioritized block scheduling for b-PULL

– Asynchronous vertex update to speed up message
propagation

– Prioritized block scheduling instead of vertex
scheduling to avoid random access to vertices

– Estimating block priority based on dynamical block-
dependency graph



Work in progress (3)
• Lightweight Fault-tolerance using b-pull

– Archiving local historical data (vertices, not
messages)

– Writing distributed checkpoint data in parallel with
updating vertices (not a blocking way)

– For failure recovery, re-pulling messages for lost
vertices and updating lost vertex values based on b-
pull



Work in progress (4)

– Offering a library implementing the typical iterative
algorithms( graph computation, matrix analysis and
data mining)

– Friendly interface and visualization
– Incremental computation and index maintenance

for graph data updates
– Support for temporal graphs and hypergraphs

• More functions for various applications
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