The First Europe-China Workshop on Big Data Management May 16, 2016, Helsinki, Finland

I/O-Efficient Big Graph Computation

Ge Yu Northeastern University, China yuge@cse.neu.edu.cn

Outline

- 1. Background & Challenges
- 2. Push & Pull Style Message Optimization
- 3. Open source Hybrid-Graph System
- 4. Work in Progress

- Big Graph
 - Social network, scientific computations, ...
 - Billion vertices & trillion edges, still growing
 - Iterative algorithms: PageRank, Shortest Path

- How to handle "Big Graph" ?
 - Graph data

- *"There are 10.4 billion daily active users on Facebook"* (Dec, 2015)
- Message data

Solution	Benefits	Problems	Systems
Single-machine+ Disk	Ease of Management	Poor scalability	GraphChi, TurboGraph
Cluster + memory	High efficiency	Scalability vs. Expense	Pregel, GPS, GraphLab
Cluster + disk	Scalability	I/O- inefficiency	Gbase, Giraph, MOCgraph, Pregelix

- BSP based Distributed Graph Processing Systems
 - Pregel[1], Hama[2], Giraph[3], GPS[4], ...
 - Spark[5], Bagel[5], GraphX[6]
 - GraphLab[7], PowerGraph[8]

- Example of Computation Expense
 - Twitter-2010 (|V|=41.7million, |E|=1.4billion)
 - graph data: 13GB
 - message data: >=13GB
 - Amazon EC2

Storage Type	Unit Price (per month)	Twitter-2010 (13+13GB)
Memory	\$9.36/GB	\$244
SSD	\$0.10/GB	\$2.6
HDD	\$0.05/GB	\$1.3

- Optimizations for distributed memory systems
 - Partition:

METIS[9], LDG[10], vertex-cut[8], load balance[11,12]

- Message Management: combiner[1], LALP[4]
- Convergence: asynchronous[7,8]/block-centric update[13,14]

Fault-tolerance: checkpoint[1], vertex replication[15]

All these optimizations are NOT designed for I/O efficient computation in disk-resident environments!

Challenges

- I/O-inefficiency for Disk-based systems
 - Graph data IO Cost read & write vertices read edges
 - Message data IO Cost read & write
- Other problems
 - Graph partitioning
 - Convergence
 - Fault-tolerance
 - Data update and incremental maintenance

2. Push vs. Pull

- Two Existing data operations : Push and Pull
- PUSH Approach (e.g. PageRank on Giraph) <u>Messages are generated when updating vertices</u> <u>at the i-th iteration, but used in the (i+1)-th iteration</u>
 - I/O of graph data: seq. reads & writes
 - I/O of message data: random writes & seq.reads

Favorite scenario:

More Messages in memory

Push vs. Pull

- PULL Approach (e.g. PageRank on modified PowerGraph) <u>Messages are generated on demand of vertex updates</u> <u>and then consumed immediately at the (i+1)-th iteration</u> – I/O of graph data: random reads & seq. writes
 - I/O of message data: none

Favorite scenario:

More Graph data in memory_

scenarios	PageRank			
Scenarios	livej	wiki	orkut	
original	3.0	3.6	5.0	
ext-mem	3.1	4.1	5.9	
ext-edge	3.9	4.8	7.1	
ext-edge-v3	4.5	5.0	7.1	
ext-edge-v2.5	654.7	960.4	1187.8	

Existing systems

- Distributed systems
 - Memory-based
 PUSH/PULL
 - Disk-based
 PUSH

Name	PUSH	PULL	DISK
Giraph++	 ✓ 		
Blogel	 ✓ 		
GiraphX	~		
GPS	 ✓ 		
GRE	 ✓ 		
Mizan	 ✓ 		
Naiad	 ✓ 		
Pregel	 ✓ 		
Trinity	 ✓ 		
Faunus	√		~
PEGASUS	v		~
Gbase	 ✓ 		√
Giraph	 ✓ 		 ✓
GraphX	 ✓ 		~
MOCgraph	 ✓ 		~
Hama	 ✓ 		~
Pregelix	 ✓ 		\checkmark
Surfer	 ✓ 		 ✓
Chronos	 ✓ 	 ✓ 	
Kineograph	V	√	
Pregel+	 ✓ 	 ✓ 	
Kylin		√	
Seraph		√	
GraphLab PowerGraph		~	
LFGraph		~	

Our Hybrid Solution

- Switching between push and pull adaptively.
- Challenges
 - Existing pull-based approaches are I/O-inefficient.
 - How to efficiently combine push and pull?
- Contributions
 - b-pull: pull messages in block-centric, not vertex-centric
 - VE-BLOCK: data structure for disk-based graph data
 - Hybrid engine: a seamless switching mechanism an effective performance prediction model
 - Z. Wang, Y. Gu, Y. Bao, G. Yu, J. Yu. Hybrid Pulling/Pushing for I/O-Efficient Distributed and Iterative Graph Computing. to appear in SIGMOD 2016.

Block-centric Pull (b-pull)

- Strength
 - avoid message data read & write
 - reduce source vertex access costs
 - reduce pull request communication costs

Graph Storage: VE-BLOCK

Block-centric Pull (b-pull)

- Pulling messages in VBlocks
 - 1) Receiver side:
 - sending pull requests for one local Vblock b_i
 - 2) Sender side:
 - producing and sending messages for b_i on demand by reading Vblocks b_j and Eblocks g_{ji}
 - 3) Receiver side:
 - consuming messages immediately and updating values of vertices in \mathbf{b}_{i}
 - One iteration = Repeat 1)-3) for every Vblock b_i

Hybrid-Decomposition

- Decomposing push and b-pull
 - push: load() à update() à pushRes()
 b-pull: pullRes() à update()
 shared update()
- Graph storage
 - push: Vblocks + edges (in adjacency list)
 b-pull: Vblocks + edges (in Eblocks)
 shared Vblocks and two replicas of edges

Hybrid-Switching Operations

- Switching between b-pull and push
 - b-pull à push: pulling & pushing messages
 - push à b-pull: no messages are generated

Hybrid-Switching Timing

• Performance metric: Q=Q(push)-Q(b-pull)

$$Q^{t} = \frac{\mathcal{M}_{co}Byte_{m}}{s_{net}} + \frac{IO(M_{disk})}{s_{rw}} - \frac{IO(V_{rr}^{t})}{s_{rr}} + \frac{IO(E^{t}) + IO(M_{disk}) - IO(\mathcal{E}^{t}) - IO(F^{t})}{s_{sr}}$$

Q^t > 0, b-pull, otherwise, push

• How to predict Q?

Metrics collected at the t-th superstep are regarded as the predicted values on superstep (t+x). (based on the methods in Ref [12] Z. Shang et al., ICDE2013)

Default Prediction interval x=2

– Prediction accuracy $\propto 1/x$, $x \in N^+$

 $-x \ge 2$, to balance the cost and gain

4. HybridGraph System

https://github.com/HybridGraph/HybridGraph

HybridGraph System

• Console of Running one job

obID: job_201208061909_0002	TaskNumber: 9 CurrentSuper	Step: 12 Tota	alSuperStep: 15	
Running	80%			
Tasks Information		Normal	🧧 Warn 📕 Fail	
WarnTag TaskID WorkerName	TaskProgress	TaskStatus	TaskMemory	
000000 cnode046	77%		451M/977M	
000001 cnode047	73%	RUNNING	584M/986M	
000002 cnode051	74%	RUNNING	393M/979M	
000003 cnode053	76%	RUNNING	851M/974M	
000004 cnode052	74%	RUNNING	662M/915M	
000005 cnode050	77%	RUNNING	263M/986M	
000006 cnode049	73%	RUNNING	716M/986M	
000007 cnode044	69%	RUNNING	742M/986M	
000008 cnode045	81%	RUNNING	431M/986M	
tatistics Information				
MaxPrograss:000008 0 80110	May Used Mem 000	002 851		
Max11091622.000000 0.00119	MaxoseuMent.000	MinUcadMapy000005 262		
MinPrograss:000007.0.68720724	MinllsedMem 000	105 263		

7.5GB

amazon

30GB

- Compared solutions
 - push: Giraph
 - pushM: MOCgraph (message online computing)
 - pull: GraphLab PowerGraph (vertex-cut optimizations)
 - b-pull: our block-centric pull
 - hybrid: our hybrid solution on top of push and b-pull
- Cluster (31 nodes)
 - Local cluster: HDDs
 - Amazon cluster: SSDs

ClusterRAMDisk $s_{rr}/s_{rw}/s_{sr}^{\dagger}$ s_{net}^{\ddagger} local6.0GB500GB1.177/1.182/2.358MB/s112MB/s

7/18/194/18/270MB/s

116MB/s

18.1

• Dataset

Table 4: Real Graph Datasets (M: million)

Graph	Vertices	Edges	Degree	Туре	Disk size
livej ⁵	4.8M	68M	14.2	Social networks	0.50GB
wiki ⁶	5.7M	130M	22.8	Web graphs	0.98GB
orkut ⁷	3.1M	234M	75.5	Social networks	1.59GB
twi ⁸	41.7M	1,470M	35.3	Social networks	12.90GB
fri ⁹	65.6M	1,810M	27.5	Social networks	17.00GB
uk ¹⁰	105.9M	3,740M	35.6	Web graphs	33.02GB

• Limited memory (local cluster with HDDs)

• Limited memory (Amazon cluster with SSDs)

5. Work in progress (1)

- Partitioning graph for I/O-efficient computation
 - Besides reducing # of cut-edges and balancing load, also considering reducing I/O costs of graph data index
 - Building a reverse graph <u>G</u> and Clustering vertices on <u>G</u> based on the similarities of outgoing edges (for I/O costs)
 - Assigning clustered vertex blocks among machines using METIS (for cut-edges and load balance)

Work in progress (2)

- Prioritized block scheduling for b-PULL
 - Asynchronous vertex update to speed up message propagation
 - Prioritized block scheduling instead of vertex scheduling to avoid random access to vertices
 - Estimating block priority based on dynamical blockdependency graph

Work in progress (3)

- Lightweight Fault-tolerance using b-pull
 - Archiving local historical data (vertices, not messages)
 - Writing distributed checkpoint data in parallel with updating vertices (not a blocking way)
 - For failure recovery, re-pulling messages for lost vertices and updating lost vertex values based on bpull

Work in progress (4)

- More functions for various applications
 - Offering a library implementing the typical iterative algorithms(graph computation, matrix analysis and data mining)
 - Friendly interface and visualization
 - Incremental computation and index maintenance for graph data updates
 - Support for temporal graphs and hypergraphs

References

- [1] Malewicz G, Austern M H, Bik A J C, et al. Pregel: a system for large-scale graph processing. SIGMOD2010.
- [2] https://hama.apache.org/
- [3] http://giraph.apache.org/
- [4] Salihoglu S, Widom J. Gps: A graph processing system. SSDBM2013.
- [5] http://spark.apache.org/
- [6] Gonzalez J E, Xin R S, Dave A, et al. Graphx: Graph processing in a distributed dataflow. OSDI2014..
- [7] Low Y, Bickson D, Gonzalez J, et al. Distributed GraphLab: a framework for machine learning and data mining in the cloud. VLDB2012.
- [8] Gonzalez J E, Low Y, Gu H, et al. Powergraph: Distributed graph-parallel computation on natural graphs. OSDI 2012.
- [9] Karypis G, Kumar V. Analysis of multilevel graph partitioning. Supercomputing1995.
- [10] Stanton I, Kliot G. Streaming graph partitioning for large distributed graphs. KDD2012.
- [11] Khayyat Z, Awara K, Alonazi A, et al. Mizan: a system for dynamic load balancing in large-scale graph processing. EuroSys2013.
- [12] Shang Z, Yu J X. Catch the wind: Graph workload balancing on cloud. ICDE2013.
- [13] Tian Y, Balmin A, Corsten S A, et al. From think like a vertex to think like a graph. VLDB2013.
- [14] Yan D, Cheng J, Lu Y, et al. Blogel: A block-centric framework for distributed computation on real-world graphs. VLDB2014.
- [15] Pundir M, Leslie L M, Gupta I, et al. Zorro: Zero-cost reactive failure recovery in distributed graph processing. SoCC.

Thanks!