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Course	:	Big	Data	Frameworks	
• Fundamentals	of	big	data	preprocessing	and	
analysis	
•  Spark	Architecture	
• File	Input	Format	
•  Spark	Lineage		
• Caching	
• Partitioning		

• Rules	of	thumb	for	developing	distributed	ML	
algorithms	
•  Spark	Streaming	
	



Carat	
• Collaborative	Analysis	for	Energy	Hoggy	or	
Buggy	Applications	in	Smartphones	and	
Recommendation.	
• Collaborative	analysis	of	Smartphone	
System	Settings		and	Recommendations	
• Collaborative	Analysis	for	Smartphone	
Battery	Anomaly	analysis	and	
Recommendation.	



ReKnow	:	Data	Preprocessing	
Pipeline	
• Data	Sources	:	Wikipedia	dump,	news	
articles,	arXiv	Latex	Source		
• Pipeline	
• Crawl	à	Clean	Tags	à	HDFS	(text)	à	
Keyword	Extraction	Spark	(Maui	2.0)	à	
HDFS	(XML)	

• Issues	:	Maui	is	not	thread-safe	
• Working	on	a	Spark	implementation	of	
Maui	2.0	
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workflow.

4.3 Distributed Analysis Platform Concept

This section introduces the distributed analysis concepts and the DAPS system.

The Data analysis workflow introduced in the previous section is aligned with the

DAPS system. The proposed system is based on a stack of open-source software

components that together form a pipeline for distributed processing of

physiological time series signals. There are other proprietary softwares or

frameworks that can provide alternate to the proposed model, but the research is

inclined towards open-source software components and does not include

information about other proprietary softwares.

Figure 18: System Architecture of the DAPS system

The challenges identified in the real-time monitoring and analysis of physiological

signals are addressed by the DAPS system. The main objective of the DAPS system

is to perform cumulative analysis of physiological signals in medical telemetry. The

DAPS system involves di↵erent layers, and each layer corresponds to process flow

defined in section 4.2. Figure 18 presents system architecture of the proposed DAPS

system.

Various software components are the building blocks for the DAPS system. The

DAPS system is a modular system, which includes Lab Streaming Layer, Apache

Kafka, Spark core, Spark Streaming, Elasticsearch, and Kibana. Spark is used as a

processing engine, where Kafka acts as an unbounded bu↵er to handle streams

from di↵erent resources. Lab Streaming Layer provides lower layer interface for

receiving physiological signals. The real-time indexing of data is performed using

Figure	Source	:	Maninder	Pal	Singh	



DAPS	:	Physiological	Streams	
• A	open	source	framework	for	collecting,	
analyzing,	and	visualizing	physiological	
time	series	in	medical	telemetry.	
• KaSka	:	collecting	streams	(EEG,	ECG,	etc)	
• Spark/	Spark	Streaming	:	Analyzing	
Streams	
• Elastic	Search	:	Indexing		
• Kibana	:	Visualization		
•  JSON	:	Data	Schema	to	propagate	data	
among	these	components.	
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Table 5: DAPS application programming interfaces

Operation Meaning

getMovingAverage( channel,

windowSize)

Return moving average of a time

series for specific channel in a window.

getEuclideanDistance( channel,

queryRDD)

Return Euclidean distance between

two time series of particular channel.

getEuclideanDistanceForChannels(

channelRDD, queryRDD)

Return Euclidean distance between

two time series of multiple channels

specified as channelRDD.

getDtwDistanceNaive( channelRDD,

queryRDD)

Return Dynamic time warping (naive)

distance between two time series as

per channels specified as channelRDD.

getDtwDistanceLC( channelRDD,

queryRDD, window)

Return Dynamic time warping

(locality constraint) distance between

two time series as per channels

specified as channelRDD.

getDtwDistanceLBKeogh(

channelRDD, queryRDD, radius)

Return Dynamic time warping

(LB Keogh) distance between two

time series as per channels specified as

channelRDD.

getMeanHR(ibiSeries) Return average heart rate for

Inter-beat Interval(IBI) series.

getMeanIBI(ibiSeries) Return average inter-beat interval

length for IBI series.

getRMSSD(ibiSeries) Return root mean square by successive

di↵erences for IBI series.

getVariance(ibiSeries) Return variance for IBI series.

getStdDev(ibiSeries) Return standard deviation for IBI

series.

getAllRPeaks(channel, frequency) Return inter-beat intervals from the

ECG time series.
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CogniDA	:	(Spark)	Rationale	
• There	is	no	way	for	to	know	whether	
• A	job	will	Sinish	with	success	or	failure.	
• The	amount	of	allocated	resources	is	adequate	
for	the	optimal	performance	of	an	algorithm.	
• The		job	will	Sinish	given	the	amount	of	
resources.		
• The	failure	can	happen	due	to	implementation	
or	lack	of	resources	
• The	implementation	of	an	algorithm	is	
optimized	or	not.	

	



Cognida	Scheduler	
•  Dynamic	Resource	Scaling	

• Extract	the	DAG	from	the	scheduler	and	pre-
execute	the	job.	
•  Estimate,	allocate	the	resources	in	each	stage	
and	create	a	stage-speciSic	proSile	
•  Learn	from	the	estimation	and	performance	and	
create	a	global	proSile	
•  Use	the	global	resource	proSile	for	the	iterative	
job	



CogniDa	:	Algorithm	Type	
• Some	of	the	algorithms	reduce	the	amount	
of	data	with	iterations	
• Singular	Value	Decomposition	

• This	allows	to	repartition	the	data	after	
each	iteration.	

• We	can	reallocate	the	resources	after	each	
iteration.	



Cognida	:	Debugging	

• Per	task	proSiling	enables	to	Sind	if	there	is	any	
straggler.	
• Per	stage	proSiling	of	a	job	allows	to	
understanding	the	performance	of	a	job	in	a	
smaller	granularity.	
• This	also	allow	to	compare	the	performance	of	
different	implementation	of	the	same	
algorithm.	
• The	relation	between	communication	and	
computation.	



Cognida	:	Spark	Streaming	
• Processing	a	single	time	series	is	easy.		
•  Streaming	frameworks	are	not	aware	of	the	
timestamp	of	the	samples	or	the	speed	of	the	
stream.	
• Processing	multiple	streams	together	is	a	
challenge	
• A	new	stream	processing	system	is	required	
where	batching	can	be	dynamic.	
•  Scaling	of	the	cluster	to	keep	up	with	the	
batching	interval.	



Thank	You	


