Big Data Application and Framework

Mohammad A. Hoque University of Helsinki

Course : Big Data Frameworks

- Fundamentals of big data preprocessing and analysis
- Spark Architecture
 - File Input Format
 - Spark Lineage
 - Caching
 - Partitioning
- Rules of thumb for developing distributed ML algorithms
- Spark Streaming

Carat

- Collaborative Analysis for Energy Hoggy or Buggy Applications in Smartphones and Recommendation.
- Collaborative analysis of Smartphone System Settings and Recommendations
- Collaborative Analysis for Smartphone Battery Anomaly analysis and Recommendation.

ReKnow : Data Preprocessing Pipeline

- Data Sources : Wikipedia dump, news articles, arXiv Latex Source
- Pipeline
 - Crawl → Clean Tags → HDFS (text) →
 Keyword Extraction Spark (Maui 2.0) →
 HDFS (XML)
- Issues : Maui is not thread-safe
- Working on a Spark implementation of Maui 2.0

DAPS : Architecture

Figure Source : Maninder Pal Singh

DAPS : Physiological Streams

- A open source framework for collecting, analyzing, and visualizing physiological time series in medical telemetry.
- Kafka : collecting streams (EEG, ECG, etc)
- Spark/ Spark Streaming : Analyzing Streams
- Elastic Search : Indexing
- Kibana : Visualization
- JSON : Data Schema to propagate data among these components.

DAPS : API

Operation	Meaning
getMovingAverage(channel, windowSize)	Return moving average of a time series for specific <i>channel</i> in a window.
getEuclideanDistance(channel, queryRDD)	Return Euclidean distance between two time series of particular <i>channel</i> .
getEuclideanDistanceForChannels(channelRDD, queryRDD)	Return Euclidean distance between two time series of multiple channels specified as <i>channelRDD</i> .
getDtwDistanceNaive(channelRDD, queryRDD)	Return Dynamic time warping (naive) distance between two time series as per channels specified as <i>channelRDD</i> .
getDtwDistanceLC(channelRDD, queryRDD, window)	Return Dynamic time warping (locality constraint) distance between two time series as per channels specified as <i>channelRDD</i> .
getDtwDistanceLBKeogh(channelRDD, queryRDD, radius)	Return Dynamic time warping (LB_Keogh) distance between two time series as per channels specified as <i>channelRDD</i> .

DAPS : API

getMeanHR(ibiSeries)	Return average heart rate for Inter-beat Interval(IBI) series.
getMeanIBI(ibiSeries)	Return average inter-beat interval length for IBI series.
getRMSSD(ibiSeries)	Return root mean square by successive differences for IBI series.
getVariance(ibiSeries)	Return variance for IBI series.
getStdDev(ibiSeries)	Return standard deviation for IBI series.
getAllRPeaks(channel, frequency)	Return inter-beat intervals from the ECG time series.

CogniDA : (Spark) Rationale

- There is no way for to know whether
 - A job will finish with success or failure.
 - The amount of allocated resources is adequate for the optimal performance of an algorithm.
 - The job will finish given the amount of resources.
 - The failure can happen due to implementation or lack of resources
 - The implementation of an algorithm is optimized or not.

Cognida Scheduler

- Dynamic Resource Scaling
 - Extract the DAG from the scheduler and preexecute the job.
 - Estimate, allocate the resources in each stage and create a stage-specific profile
 - Learn from the estimation and performance and create a global profile
 - Use the global resource profile for the iterative job

CogniDa : Algorithm Type

- Some of the algorithms reduce the amount of data with iterations
 - Singular Value Decomposition
- This allows to repartition the data after each iteration.
- We can reallocate the resources after each iteration.

Cognida : Debugging

- Per task profiling enables to find if there is any straggler.
- Per stage profiling of a job allows to understanding the performance of a job in a smaller granularity.
- This also allow to compare the performance of different implementation of the same algorithm.
- The relation between communication and computation.

Cognida : Spark Streaming

- Processing a single time series is easy.
- Streaming frameworks are not aware of the timestamp of the samples or the speed of the stream.
- Processing multiple streams together is a challenge
 - A new stream processing system is required where batching can be dynamic.
 - Scaling of the cluster to keep up with the batching interval.

Thank You