Big Data Application
and Framework

Mohammad A. Hoque
University of Helsinki

Course : Big Data Frameworks

* Fundamentals of big data preprocessing and
analysis

» Spark Architecture
File Input Format
Spark Lineage
Caching
Partitioning

* Rules of thumb for developing distributed ML
algorithms

* Spark Streaming

Carat

Collaborative Analysis for Energy Hoggy or
Buggy Applications in Smartphones and
Recommendation.

Collaborative analysis of Smartphone
System Settings and Recommendations

Collaborative Analysis for Smartphone
Battery Anomaly analysis and
Recommendation.

ReKnow : Data Preprocessing
Pipeline
 Data Sources : Wikipedia dump, news
articles, arXiv Latex Source
* Pipeline
Crawl - Clean Tags = HDFS (text) =

Keyword Extraction Spark (Maui 2.0) -
HDFS (XML)

* [ssues : Maui is not thread-safe

* Working on a Spark implementation of
Maui 2.0

DAPS : Architecture

Processed data

' | !
Data source I I | R R S e R R S R
I | | |
: Spark I | A i
Streami y A o .
I S § Elaslic Distributed |
I {1 .l searchengine |
- i - R
I U A i
I s - I i i
Data source | D | Data |
: b0 visualization |
I Pub-5ub I Streaming R T]

. platform | framework '

Figure Source : Maninder Pal Singh

DAPS : Physiological Streams

* A open source framework for collecting,
analyzing, and visualizing physiological
time series in medical telemetry.

» Kafka : collecting streams (EEG, ECG, etc)

» Spark/ Spark Streaming : Analyzing
Streams

» Elastic Search : Indexing

» Kibana : Visualization

* JSON : Data Schema to propagate data
among these components.

DAPS : AP]

Operation Meaning
getMovingAverage(channel, Return moving average of a time
windowSize) series for specific channel in a window.
getFuclideanDistance(channel, Return Euclidean distance between
queryRDD) two time series of particular channel.
getFuclideanDistanceForChannels(Return Euclidean distance between
channelRDD, queryRDD) two time series of multiple channels
specified as channelRDD.
getDtwDistanceNaive(channelRDD, Return Dynamic time warping (naive)
queryRDD) distance between two time series as

per channels specified as channelRDD.

getDtwDistanceLC(channelRDD, Return Dynamic time warping
queryRDD, window) (locality constraint) distance between

two time series as per channels
specified as channelRDD.

getDtwDistanceLBKeogh(Return Dynamic time warping
channelRDD, queryRDD, radius) (LB_Keogh) distance between two
time series as per channels specified as
channelRDD.

DAPS : AP]

getMeanHR (ibiSeries)

Return average heart rate for

Inter-beat Interval(IBI) series.

getMeanIBI(ibiSeries)

Return average inter-beat interval

length for IBI series.

getRMSSD (ibiSeries)

Return root mean square by successive

differences for IBI series.

getVariance(ibiSeries)

Return variance for IBI series.

getStdDev(ibiSeries)

Return standard deviation for IBI

series.

get AlIR Peaks(channel, frequency)

Return inter-beat intervals from the

ECG time series.

CogniDA : (Spark) Rationale

There is no way for to know whether
A job will finish with success or failure.

The amount of allocated resources is adequate
for the optimal performance of an algorithm.

The job will finish given the amount of
resources.

The failure can happen due to implementation
or lack of resources

The implementation of an algorithm is
optimized or not.

Cognida Scheduler

* Dynamic Resource Scaling

Extract the DAG from the scheduler and pre-
execute the job.

Estimate, allocate the resources in each stage
and create a stage-specific profile

Learn from the estimation and performance and
create a global profile

Use the global resource profile for the iterative
job

CogniDa : Algorithm Type

» Some of the algorithms reduce the amount
of data with iterations

Singular Value Decomposition

» This allows to repartition the data after
each iteration.

* We can reallocate the resources after each
1teration.

Cognida : Debugging

* Per task profiling enables to find if there is any
straggler.

* Per stage profiling of a job allows to
understanding the performance of ajob in a
smaller granularity.

* This also allow to compare the performance of
different implementation of the same
algorithm.

* The relation between communication and
computation.

Cognida : Spark Streaming

* Processing a single time series is easy.

* Streaming frameworks are not aware of the
timestamp of the samples or the speed of the
stream.

* Processing multiple streams together is a
challenge

A new stream processing system is required
where batching can be dynamic.

Scaling of the cluster to keep up with the
batching interval.

Thank You

